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Abstract. We have performed 3-D numerical simulations of compressible convection under the
influence of rotation and magnetic fields in spherical shells. They aim at understanding the subtle
coupling between convection, rotation and magnetic fields in the solar convection zone. We show
that as the magnetic Reynolds number is increased in the simulations, the magnetic energy saturates
via nonlinear dynamo action, to a value smaller but comparable to the kinetic energy contained in
the shell, leading to increasingly strong Maxwell stresses that tend to weaken the differential rotation
driven by the convection. These simulations also indicate that the mean toroidal and poloidal mag-
netic fields are small compared to their fluctuating counterparts, most of the magnetic energy being
contained in the non-axisymmetric fields. The intermittent nature of the magnetic fields generated
by such a turbulent convective dynamo confirms that in the Sun the large-scale ordered dynamo
responsible for the 22-year cycle of activity can hardly be located in the solar convective envelope.

1. Introduction

Observations of the solar convective surface reveal that it rotates differentially, the
equatorial regions being about 30% faster that the polar regions. Thanks to helio-
seismology, it has been demonstrated that this strong differential rotation imprints
the whole convective envelope to then become uniform in the radiative interior
(Thompson et al., 2003; Couvidat et al., 2003). This transition occurs at the base
of the convection zone (r � 0.71 R�, where R� is the solar radius) in a thin shear
layer called the tachocline. The Sun also exhibits both random and cyclic magnetic
activity with phenomena as diverse as coronal mass ejections, prominences and
sunspots (Stix, 2002). Understanding the physical processes behind such a com-
plex magnetohydrodynamical (MHD) system and how they are interacting to yield
ordered properties such as the large-scale mean flows or the 22-year cycle, has
turned out to be one of the major challenges of modern astrophysics (Brummel,
Cataneo, and Toomre, 1995; Ossendrijver, 2003). Indeed such intricate nonlinear
interactions can not be directly predicted from first principles. Therefore altern-
ative techniques have been developed to improve our ‘physical intuition’ about
the working of such complex dynamical processes. For example, mean field the-
ory (Moffat, 1978; Krause and Rädler, 1980) has been succesful at laying down
the basic principles behind the solar dynamo, such as the ω and α effects. More
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recently, fully nonlinear 3-D MHD simulations have started to refine and to im-
prove our understanding. It is currently believed that our star operates a dynamo at
two differing ranges of spatial and temporal scales (Cattaneo and Hughes, 2001).
The global dynamo yielding the regular 22-year cycle and butterfly diagrams for
sunspot emergence is likely to be seated within the tachocline (Parker, 1993). The
origin of the rapidly varying and smaller scale magnetism is probably due to local
dynamo action.

We would like here to address some aspects of the nonlinear coupling between
convection, rotation and magnetic fields in the Sun. We believe that numerical
simulations of a rotating conducting convective fluid in full spherical geometry
could help understanding of this difficult problem. Unfortunately even today 3-
D simulations of the whole solar dynamo problem are intractable considering the
6 orders of spatial and temporal scales realized in the turbulent solar convection
zone. As an alternative one can split the dynamo problem into ‘blocks’ that answer
specific questions, such as magnetic field amplification, magnetic field pumping,
flux tube rising . . . Following the pioneering work of Gilman and Glatzmaier (Gil-
man, 1983; Glatzmaier, 1987), we have conducted global, high-resolution (up to
spherical harmonic degree �max = 340), 3-D MHD simulations of the bulk of
the solar convection zone. Since both the α and ω effects are thought to play a
crucial role in the working of the solar dynamo, we are interested in studying the
interplay between differential rotation and magnetic fields and how dynamo gen-
erated magnetic fields feedback on the large scale convection via Lorentz forces.
In particular we would like to address the following two questions: (a) Are there
numerical solutions that both display a dynamo generated magnetic field and re-
tain a strong differential rotation profiles as deduced by helioseismic inversions?
(b) What are the respective roles of the Reynolds and Maxwell stresses and of
the large-scale magnetic torque in the transport of the angular momentum in our
turbulent convective rotating shells?

We briefly present in Section 2 our numerical model and the anelastic spherical
harmonics (ASH) code used in this work. In Section 3 we discuss the influence
of magnetic fields on the turbulent rotating convective zone, compare our results
with past and present observations of the Sun and with earlier 3-D MHD numerical
simulations of the solar convection envelope. We then summarize in Section 4 our
findings.

2. Formulating the Problem

The ASH code solves the 3-D MHD anelastic equations of motion in a rotat-
ing spherical shell geometry using a pseudo spectral semi-implicit method (Clune
et al., 1999; Brun, Miesch, and Toomre, 2004). The anelastic approximation cap-
tures the effects of density stratification without having to resolve sound waves
which would severely limit the time steps. The resulting equations are fully non-
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linear in velocity and magnetic field variables; the thermodynamic variables are
separated with respect to a spherically symmetric and evolving mean state (denoted
with an overbar) and fluctuations about this mean state:

∇ · (ρ̄v) = 0, (1)
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∂B
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where v = (vr , vθ , vφ) is the local velocity in spherical coordinates in the frame
rotating at constant angular velocity �o = �oez, B is the magnetic field, κr is the
radiative diffusivity, η is the effective magnetic diffusivity, ν and κ are effective
eddy diffusivities, D is the viscous stress tensor and eij is the strain rate tensor. All
the other variables have their usual meaning.

We use a toroidal and poloidal decomposition that enforces the mass flux and
the magnetic fields to remain divergence free. The effects of the steep entropy
gradient close to the surface has been softened by introducing a subgrid scale (SGS)
transport of heat to account for the unresolved motions, and enhanced diffusivities
are used in these large eddy simulations (LES). The boundary conditions at the top
and bottom of the computational domain are stress-free impenetrable walls for the
velocity field, constant entropy gradient for the entropy and match to a potential
field for the magnetic field.

The model is a simplified description of the solar convection zone: solar values
are taken for the heat flux, rotation rate, mass and radius, and a perfect gas is
assumed. The computational domain extends from 0.72 R� to 0.96 R�, thereby
concentrating on the bulk of the unstable zone and here not dealing with pene-
tration into the radiative interior nor with the partially ionized surface layers. The
maximum numerical resolution used in case M3 is Nr = 129 radial collocation
points and Nθ = 512 and Nφ = 1024 latitudinal and longitudinal grid points
(corresponding to taking all degrees up to the spherical harmonic degree �max =
340). The typical density difference across the shell in radius is about 30.

We start our MHD simulations from an already evolved and equilibrated purely
hydrodynamical solution, namely case H , characterized by a Rayleigh number
Ra = 105, a Taylor number T a = 1.2 × 106 and a Prandtl number Pr = 1/8.
This case possesses a strong, almost solar-like differential rotation (cf. Figure 3
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and Brun, Miesch, and Toomre, 2004). A seed axisymmetric dipolar magnetic field
is then introduced in the convective spherical shell and the simulations evolved in
time.

In the following section we report on the main results obtained with our nu-
merical simulations by comparing two magnetic cases, M1 and M3, among many
others that we have computed. These two cases possess in turn a magnetic Prandtl
number Pm = ν/η of 2 and 4, leading in case M3 to a rms magnetic Reynolds
number (Rm = ṽL/η, where L is the shell thickness and ṽ a representative rms
velocity), about a factor of two bigger than in case M1. Both simulations have
been started with a magnetic energy (ME) seven order of magnitude smaller than
the total kinetic energy (KE) contained in the non-magnetic convective case H (i.e.,
(ME/KE)0 = 10−7).

3. Rotating Convective Zone and Associated Mean Flows in the Presence of
Magnetic Fields

The interaction between differential rotation and magnetic fields is complex and
nonlinear; the differential rotation amplifies the mean toroidal magnetic field via
the ω-effect and the Lorentz forces feedback on the flow as soon as the mean
or fluctuating magnetic fields reach a threshold amplitude. We have found in the
numerical experiments presented here that the magnetic fields do have a strong
influence on the resulting mean flows achieved in convective spherical shells but
not exactly in the way anticipated by mean field theory.

3.1. KINETIC AND MAGNETIC ENERGY DISTRIBUTIONS

Let us first consider the energy budget in our simulations as we break down the
kinetic and magnetic energies into axisymmetric and non-axisymmetric parts. In
Figure 1 we display the time trace of the kinetic and magnetic energies of M1 and
M3 over respectively 1200 and 4000 days (corresponding in each case to several
ohmic decay times τη = ṽL/(π2η)). We see that the magnetic energy of case M1
(hereafter ME1) is decaying whereas that in case M3 (ME3) has grown by more
than a factor of 105, reaching a value of 7% of the kinetic energy (KE3). This
clearly indicates that case M3 is running an efficient dynamo. The exponential
growth of ME3 at the beginning of the temporal evolution (first 600 days) and its
subsequent nonlinear saturation, due to the feedback from the Lorentz forces, are
typical of dynamo action and are in good agreement with the expected properties of
a stellar dynamo (cf., Cattaneo, Hughes, and Weiss, 1991). The rise of ME3 leads
to a decrease of KE3 (by 37%), but does not totally compensate for that reduction.
We found that the sum of KE3+ME3 is smaller than the initial kinetic energy KE0
contained in case H , indicating that the energy redistribution in our convective
shells is modified by the presence of magnetic fields. To assess the cause of the
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large reduction of KE3, we also display in Figure 1 the kinetic energy contained
in the differential rotation (DRKE3) and in the convective motions (CKE3) (that in
the meridional circulation is only ∼ 0.3% of KE3). It is clear that DRKE3 is more
affected by the presence of magnetic energy than CKE3, becoming even smaller
than CKE3 after 3800 days. This result suggests that the decrease in kinetic energy
is due to a weakening of the energy contained in the differential rotation rather
than in a less vigorous convection. In case M3, ME is found to be equal or above
local equipartition near the top of the domain, for about 2% of the surface area. The
radial distribution of ME3 peaks near the bottom of the shell. This is certainly due
to magnetic pumping by the strongest downflows or plumes (Tobias et al., 2001).

Figure 1. Temporal evolution of the kinetic energy (KE) and magnetic energy (ME) for cases M1
and M3, involving respectively rms magnetic Reynolds numbers Rm of 250 and 500.

The mean toroidal and poloidal magnetic energies (TME and PME) contribute
respectively only 1.5% and 0.5% of ME3. The non-axisymmetric magnetic fields
thus contained 98% of the total magnetic energy. In the Sun, the mean toroidal field
is about 2 orders of magnitude larger than the mean poloidal field. The fact that in
our simulation of global-scale convection this ratio is of order 1, indicates that the
Sun must generate the strong large scale mean toroidal field outside its convective
zone. The stably stratified tachocline at the base of the solar convection zone seems
a natural location to amplify even further the mean toroidal field to the required
observational level. Pumping of the magnetic field by turbulent convective plumes
could certainly help in continuously supplying the tachocline with fields produced
in the solar envelope.

When comparing the energy redistribution achieved in our simulations with
that found in the earlier numerical simulations of the solar convective envelope
by Gilman (1983), using the Boussinesq approximation, and by Glatzmaier (1987)
using the anelastic approximation, we find a good overall agreement. For instance,
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we all find that the larger is the magnetic energy contained in the convective shell,
the smaller is DRKE, resulting in a damping of the differential rotation (cf., Sec-
tion 3.3). We also find that increasing the magnetic Prandlt number Pm, leads to
a larger amplitude of the magnetic energy. The main differences are found in the
relative amplitude of the mean toroidal and poloidal magnetic energies achieved
in the simulations. We have seen that TME and PME in case M3 are rather small
compared to both ME and KE. In the work of Glatzmaier, ME is only about 0.1%
of KE, so being relatively much smaller than in case M3, but TME represents 85%
of that total. This is certainly due to the presence in these simulations of a stable
region at the bottom of the convective envelope. In the work of Gilman discussing
several cases, there is one case that possesses a ratio ME/KE of about 7% as in
case M3 (case with Q = η/κ = 1.7), but TME and PME are again found to be
a significant fraction of ME (∼ 20%). The case with Q = 0.5 possesses a small
mean magnetic energy T ME + PME ∼ 3.5%, closer to that found in case M3,
but its magnetic energy rose to 45% of KE. At that level of magnetism the kinetic
energy contained in the differential rotation (DRKE) drops to only 30% of KE,
resulting in an excessively weak differential rotation. Such strong damping of the
angular velocity is not observed in case M3 (cf. Section 3.3). Certainly the different
sets of parameters (Ra, T a, Pr , and Pm) used in their simulations by the three
authors, explain for the most part the differences seen in the energy ratios, making
a direct quantitative comparison rather difficult. Another explanation could be the
numerical resolution used in the simulations, since in our study it is more than 10
times larger (e.g., �max = 340 vs �max = 24 or 32 in the earlier studies). We indeed
find that the magnetic energy spectrum in case M3 (not shown) does not peak at
the azimuthal wavenumber m = 0 as in the cases published by Gilman (1983), but
between m = 1 and 10, confirming the non-axisymmetric nature of the magnetic
fields.

3.2. MORPHOLOGY OF THE VELOCITY AND MAGNETIC FIELDS

The convection realized in cases H , M1 and M3 is intricate and time dependent,
involving continuous shearing, cleaving and merging of the convective cells. Fig-
ure 2 displays for case M3 the radial, latitudinal and longitudinal components of
both the velocity and magnetic fields near the top of the domain at one instant in
time.

We note that the radial velocity (top left panel) is asymmetric, downflows being
concentrated in narrow lanes surrounding the broad upflows. Pronounced vortical
structures are evident at the interstices of the downflows network. They are cyc-
lonic, i.e., counterclockwise in the northern hemisphere and clockwise in the south-
ern one. The strongest of these vortex tubes or ‘plumes’ extend through the whole
domain depth. These plumes represent coherent structures that are surrounded by
more chaotic flows. They tend to align with the rotation axis and to be tilted away
from the meridional planes, leading to Reynolds stresses that are crucial ingredi-
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Figure 2. Snapshot of the radial, latitudinal and longitudinal velocities (upper row) and magnetic
fields (lower row) in case M3 near the top (0.96 R�) of the spherical domain. Downflows and
negative polarity appear dark. Representative min/max amplitudes for the velocities (in m s−1) and
for the magnetic fields (in gauss) are indicated at the bottom right of each panel. The dashed curve
delineates the equator.

ents in redistributing the angular momentum within the shell (cf., Section 3.3).
The latitudinal velocity vθ is more patchy and symmetric than vr . The horizontal
velocity vφ possesses the clear banded signature of the differential rotation driven
by the convection with a fast/prograde equator and slow/retrograde high latitude
regions. The strongest downflow lanes are apparent in the horizontal velocities.

Turning now to the bottom row of Figure 2, we notice that the magnetic fields
possess a finer structure than the velocity fields (due to our choice of Pm > 1), and
that the radial and horizontal components of the magnetic fields possess different
morphologies. The radial magnetic field has been swept into the downflow lanes.
This is not the case for the horizontal fields, where large patches of a given polarity
are found in the middle of the convective cells. Strong magnetic field gradients
are present near the downflows network, where the magnetic fields are continously
sheared and streched. Substantial magnetic helicity is present, involving complex
winding of the toroidal magnetic fields along their length, with both polarities inter-
changing their position into intricate structures. There are no obvious correlations
between the two horizontal vector fields. By contrast the strongest (unsigned) radial
magnetic field |Br | does correlate with the strongest downflow lanes seen in the
radial velocity. In all the six fields displayed, a clear north–south asymmetry is
present.
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3.3. DIFFERENTIAL ROTATION WITH OR WITHOUT MAGNETIC FIELDS

Figure 3 (left panel) shows the sidereal angular velocity �(r, θ) of case H (con-
verted into nHz, with �o/2π = 414 nHz). There is a strong rotational contrast ��

between the fast equator and the slow high-latitude regions. The contrast �� from
0◦ to 60◦ is 140 nHz equivalent to a ��/�o of about 34%. There is some constancy
along radial lines at mid latitudes (45–75◦) and a systematic decrease of � with
latitude even in the polar regions. The angular velocity profile is in good qualitative
agreement with helioseismic inversions of the solar differential rotation (Thompson
et al., 2003). The differential rotation profile in case H is due to the equatorward
transport of angular momentum by Reynolds stresses, themselves closely related
to the tilted plumes realized in turbulent convective flows which are the source of
velocity correlations such as v̂′

rv
′
φ . These Reynolds stresses oppose the poleward

transport of angular mometum by viscous stresses and meridional circulation and
lead to an equatorial acceleration (Brun and Toomre, 2002).

Figure 3. Temporal and longitudinal averages of the angular velocity profiles achieved in case H and
M3 over an interval of 100 days (shown as contour plots). These cases exhibit a prograde equatorial
rotation and a strong contrast �� from equator to pole, as well as possess a high-latitude region of
particularly slow rotation. In the right panel, displaying radial cuts of � at indicated latitudes for
both cases, the reduction in �� due to the nonlinear feed back of the Lorentz forces (solid vs dashed
lines) can be assessed.

In Figure 3 (middle panel) we display the � profile achieved in case M3. Case
M1 possesses a differential rotation identical to case H and is not shown. With
fairly strong magnetic fields sustained within the bulk of the convection zone in
case M3, it is to be expected that the differential rotation � will respond to the
feedback from the Lorentz forces. As seen in Section 3.1 the main effect of the
Lorentz forces is to extract energy from the kinetic energy stored in the differential
rotation. As a consequence ��/�o drops by ∼ 30% in going from 34% in case
H down to 24% in case M3. This value is thus even closer to the value of 22%
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(between 0◦ and 60◦ of latitude) inferred from seismic inversion of the solar profile
(Thompson et al., 2003). Since the convection is still able to maintain an almost
solar-like angular velocity contrast from low-to-high latitudes, the magnetic field
does not reduce the differential rotation as much as one might expect. One possible
explanation for such a mild reduction of the differential rotation contrast could be
the fact that ME is only 7% of KE. In Section 3.1 we have shown that a rather high
level of magnetism is needed to damp the differential rotation significantly (around
a ratio of ME/KE of about 0.25, see also Gilman, 1983). The fact that in case M3
the mean poloidal magnetic field is weak compared to its fluctuating counterpart,
indicates that the slowing down of the differential rotation is not due to the torque
applied by the large-scale axisymmetric magnetic fields but to a more subtle effect
connected to the twisted structure of the magnetic fields.

Figure 4. Illustration of the balance of angular momentum in latitude and radius in case M3 between
the Reynolds stresses, Maxwell stresses, viscous torques, large-scale magnetic torques and the
meridional circulation. The arrow length is proportional to the amplitude of the process.

A careful study of the redistribution of the angular momentum in our shell
reveals that the source of the reduction of the latitudinal contrast of � can be attrib-
uted to the poleward transport of angular momentum by the Maxwell stresses (cf.
Figure 4, and Brun et al., 2004 for more details). The large-scale magnetic torques
are found to be 2 orders of magnitude smaller, confirming the small dynamical role
played by the mean fields in our simulations. The Reynolds stresses now need to
balance the angular momentum transport by the meridional circulation, the viscous
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diffusion and the Maxwell stresses. This results in a less efficient speeding up of
the equatorial regions. However, the Maxwell stresses are not yet the main players
in redistributing the angular momentum and case M3 is able to sustain a strong dif-
ferential rotation as observed in the present Sun. There is good agreement between
this work and the earlier studies of Gilman (1983) and Glatzmaier (1987) on the
role of the Maxwell and Reynolds stresses in redistributing the angular momentum
in the shell. We all find that the magnetic fields tend to make the rotation profile
more uniform. Our results differ on the actual strength of such reduction and on
the profile of angular velocity achieved.

Based on observations of the Sun by J. Hevelius in 1642–1644, Eddy, Gilman,
and Trotter (1976) showed that during this period, the few observed solar sunspots
in the equatorial regions were rotating about 4% faster than today. We believe that
the fact that case M1 (or equivalently case H ) is rotating faster than case M3
(because of the absence of substantial magnetic stresses acting to slow down the
equatorial regions and speed up the poles), has some bearing on Eddy, Gilman, and
Trotter’s results. Certainly a reduced level of magnetism in a convective zone could
lead to faster equatorial region and slower polar regions, i.e., to a larger differential
rotation contrast. It is not clear if during the Maunder minimum only the large-scale
dynamo action seated in the tachocline was reduced in amplitude (explaining the
fewer number of observed sunspots), or if the small scale dynamo action generated
by the turbulent convective motions was weaker as well. Let’s assume here that
both dynamos were weaker in the Sun during the Maunder minimum, and that
reduced/weaker Maxwell stresses (and/or large-scale magnetic torques) resulted in
a faster equatorial region, in a way similar to what is realized in cases H or M1.
We can then use our simulated � profile to deduce the latitudinal distribution of
the change in � with or without the feedback of strong magnetic fields. We found
that such a function of θ (the colatitude) varies from about −6% (θ = 0) to about
+6% (θ = 90◦) in comparing cases H and M3. If we now apply this scaling
function to the present surface differential rotation, here approximated as ��(θ) =
456−72×cos2(θ)−42×cos4(θ), we can extrapolate the solar differential rotation
profile to a period of ‘grand activity minimum’.

Figure 5 displays the current, mid-1600s and extrapolated � profiles (the old
profile being limited to the ±20◦ band, cf. Figures 3 and 4 of Eddy, Gilman, and
Trotter, 1976). The agreement between the extrapolated curve and the old data
points is reasonable, and corresponds to a faster rotation by about 4 to 5% at the
equator. In Eddy, Gilman, and Trotter the old and present rotational curves meet
at a latitude of about ±20◦, whereas in the extrapolated rotation curve it occurs
at 30◦. Beyond this latitude of 30◦, the extrapolated rotational curve predicts that
these regions were likely rotating slower than today.
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Figure 5. Possible surface differential rotation profile of the Sun during the quiet magnetic
phase of the Maunder minimum. The current solar profile is shown in plain solid and the
modified profile (dashed line) is deduced after multiplying the solid line by the scaling law
(�surf−H (θ) − �surf−M3(θ))/�surf−H (θ). The solid line superimposed with 1-σ error bars,
reproduces the results of Eddy et al. (1976) during the 1642-1644 period. In the ±20◦ latitudinal
band the agreement between the extrapolated curve and Eddy et al. study is reasonable.

4. Conclusions

Our 3-D MHD simulations of convection in deep spherical shells, achieved through
the use of massively parallel supercomputers, are showing how the strong dif-
ferential rotation present in the Sun may be maintained through fairly complex
redistribution of angular momentum by the turbulent compressible flows in a con-
ducting media. We have studied the interaction of convection and rotation with seed
magnetic fields in such shells, and found solutions in which sustained magnetic dy-
namo action can be realized without unduly reducing the angular velocity contrasts
maintained by the convection, thus answering positively question (a) raised in the
Introduction. In seeking to answer question (b), we have found that the Maxwell
stresses oppose the Reynolds stresses and seek to speed up the poles and that
the large-scale magnetic torques play almost no role. The reduction in differen-
tial rotation is thus not due to the torque applied by the large-scale axisymmetric
(i.e., m = 0) magnetic fields but to a more subtle braking effect exerted by the
non-axisymmetric magnetic fields. In our models, the stronger are the dynamo gen-
erated fields, the weaker is the differential rotation, confirming the earlier results
of Gilman (1983) and Glatzmaier (1987). We find that above a ratio of magnetic to
kinetic energy of about 0.25, the differential rotation becomes excessively damped.
It seems that a ratio of ME/KE of about 0.05–0.07 leads to a reduction of the
differential rotation compatible with that seen in the Sun when comparing past and
present observations (cf., Section 3.3). In the context of a mean field solar dynamo,
our results imply that the ω-effect is likely ’quenched’ more strongly than the ‘α’-
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effect by the presence of magnetic fields. But the fibril and intermittent nature of
the dynamo generated magnetic fields seen in our simulations casts some doubts
on the ability of mean field dynamo concepts to truly capture the intricate interplay
between convection, rotation and magnetic fields. Our simulations of large-scale
convection in spherical geometry strengthen the current paradigm that the strong
mean toroidal magnetic field at the origin of the surface sunspots is likely stored
and amplified in the tachocline at the base of the solar convective zone. The role
of the convective envelope being to continuously produce, pump down and supply
the disorganized magnetic fields to the tachocline. We are aware that the numerical
experiments discussed in this work represent at best a crude description of the solar
dynamics and that great care has to be taken in extending their results to the Sun. In
reality the Sun is much more complex with the presence of strong shear layers both
at the bottom and at the top of its convective zone and the possibility to globally
reorganize its magnetic field and helicity via intense coronal mass ejections. We
intend to address some of these issues in forthcoming papers.
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